实时热搜: 一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O...

一块方板,可以绕过其一个水平边的光滑固定轴自由... 一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O...

84条评论 172人喜欢 5375次阅读 759人点赞
一块方板,可以绕过其一个水平边的光滑固定轴自由... 一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O... 水平光滑固定轴一块方板,可以绕过其一个水平边的光滑固定轴自由转动,最初板自由下垂角动量守恒,因为作用过程中,外力(重力)的力矩为零,符合角动量守恒条件; 动量守恒,因为作用过程中,外力=重力和轴对系统的冲量之和为零,符合守恒条件; 机械能不守恒,因为碰撞是完全非弹性的。

如图所示,质量为m1=24kg的匀质圆盘,可绕水平光滑...如图所示,质量为m1=24kg的匀质圆盘,可绕水平光滑固定轴转动,一轻绳绕 解:对系统进行受力分析如上图, (1)利用转动定理对盘m1,盘m2列出转动方程 T1*R=I1*β1 I1=1/2*m1*R^2 (T2-T1')r=I2*β2 I2=1/2*m2*r^2 对m: mg-T2'=ma 绳不可伸长,绳与定滑轮间无相对滑动,可列出约束条件: a=r*β2=R*β1 解以上各式得: mg=(m

一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图...一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图射来两个质量相同、速合外力矩为零,但是总体质量增大,所以角速度减小

一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O...一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O旋转,初始状态为静止守恒,因为细杆不能水平自动,只能旋转,而所受的外力是水平的与之垂直,故细杆动量为零

一长为1m的均匀直棒可绕过其一端且与棒垂直的水平...一长为1m的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动抬起另刚释放时,由转动定理:mg(L/2)cos60= (mL²/3)β 解得 角加速度 β= 转到水平位置时,mgL/2 =(mL²/3)β' 解得 β'=

长为L的轻杆,两端各固定质量分别为m和2m的小球,杆...长为L的轻杆,两端各固定质量分别为m和2m的小球,杆可绕水平光滑固定轴O在

如图所示,一匀质细杆可绕通过上端与杆垂直的水平光...既然是非弹性碰撞 碰撞过程中就有能量损失 那么机械能和动量肯定不守恒 角动量只于转动有关的量 是守恒的

一圆盘正绕垂直于盘面的水平光滑固定轴转动,有俩...一圆盘正绕垂直于盘面的水平光滑固定轴转动,有俩质量相同速度大小相同由于两个子弹质量速度相等,且运动方向相反。因此假如两个先撞击到一起,则撞击以后子弹的运动速度为0。因此,可以认为两个子弹先撞击到一起,然后再和圆盘结合到一起。这就相当于一个静止的物体和转动的圆盘相撞并结合为一体。圆盘角速度会变校

一块方板,可以绕过其一个水平边的光滑固定轴自由...一块方板,可以绕过其一个水平边的光滑固定轴自由转动,最初板自由下垂角动量守恒,因为作用过程中,外力(重力)的力矩为零,符合角动量守恒条件; 动量守恒,因为作用过程中,外力=重力和轴对系统的冲量之和为零,符合守恒条件; 机械能不守恒,因为碰撞是完全非弹性的。

一根放在水平光滑桌面上的匀质棒,可绕通过其一端 ...一根放在水平光滑桌面上的匀质棒,可绕通过其一端 的竖直固定光滑轴O转(1)由角动量守恒 m'vl=(ml^2/3+m'l^2)ω ω=m'v/(m/3+m')l=154rad/s (2)由转动定律 -Mr=(ml^2+m'l^2)β 0-ω^2=2βθ θ=(m/3+m')l^2ω^2/2Mr=154rad

404